Luther Case Study
Resemblance

Detection of fraudulent similar claims

with data privacy constraints across
Insurance carriers

.'i:"l'ip:" .
AN g3 : I'ﬁ
|. ..- J = ‘-- ‘ ‘
‘ \f%[_ ' *"’Z’-‘cﬁ[_
ff#fm’fﬁ iz e w % 9
EAARBA LSS5 MAddddAdd e LR e Ifﬂﬂﬁ :
% i “ . , ; R | '
‘n \ Y
e

1. Introduction

The Reinsurance group of America found that 3-4% of all claims are
fraudulently resulting in fraud-related losses, equivalent to 3 - 6% of total expenditure’.
Fraud and abuse take place at many points of the insurance process and the costs of
such an issue have been estimated by the Coalition Against The Fraud (CAIF) as
around $80 Billion per year?. The result is not only a higher cost of care but more
importantly higher insurance premiums for all consumers. Fraud and abuse take place
at many points of the process and the prevalent two consequences are:

e Higher billing - bill services not rendered, unbundling services
e Similar claims issued

What makes similar claims hard to detect is Insurers cannot legally share
commercial data with competitors or others and disclosing personally identifiable
information presents a privacy violation. The absence of a collaborative and
automated product for similar claims identification with data privacy protection has
been a real barrier for AXA & AIA to address this problem. This is why AXA & AIA have
partnered with Luther to build this product for a safe and privacy-wise collaboration.

The Resemblance product can:

Identify similar claims

Ensure data privacy between all the participants of the network

Ensure data storage is GDPR Compliant

Identify similar claims in less than 1 sec

Create a network that is easily scalable to add new insurance companies

There are similar use cases in many industries which require a network of
participants to detect similar documents across each participant’s private repository.
For example, private watchlists containing the profile of suspicious individuals are
maintained by separate land, sea, and airport authorities. Further examples include
procurement, mortgage, tax, motor finance, and insurance coordination of Benefits.
Resemblance is a technology that was initially developed for Claims fraud, and it
allows the match detection between documents using a novel “Multi-signature
hashing” method. It achieved the following results and is a foundation for
collaboration with privacy and security constraints.

$2.7M 50% 90% 10X
costs reduction Operating costs less processing estimated ROI
for fraud fraud audit time

"For more data: https//www.rgare.com/knowledge-center/media/research/rga-2017-global-claims-fraud-survey

2 For more data on insurance fraud - https://www.iii.org/article/background-on-insurance-fraud

ép Luther Systems 2

https://www.iii.org/article/background-on-insurance-fraud
https://www.rgare.com/knowledge-center/media/research/rga-2017-global-claims-fraud-survey

2. Existing similar Claims Detection Process

There are no viable solutions available on the market.

ﬂp Luther Systems 3

3. Problem

A network of participants requires the ability to detect matches on documents
across each participant's private repository. In the case of multiple insurance
providers, the need is to detect fraud by determining if the same or a similar claim was
filed with another insurer.

An example that can help to understand the importance of such a tool. Jeff has
an accident in Germany during his holidays. Jeff is insured by company A in Spain and
his wife Kelly is insured by company B in Spain. When they are back they can file two
claims with their two insurance companies, neither of them will know that they are
reimbursing the same incident. This is a type of Fraud that with a similarity check can
be detected and properly addressed.

In many cases, the participants desire to keep the contents of their repository
private from the other participants. Additionally, the document checked against these
private repositories should also be kept private. The documents themselves
sometimes contain Personal Identifiable Information (PIl) and are subject to data
storage and processing requirements to ensure user privacy (compliance, regulation,
sensitive data). The documents across the repositories may have slight differences
yet still be considered similar to another, which requires systems to include a
document similarity metric that detects similar documents. When a similar document

[59 Luther Systems 4

is detected, then the system needs to determine which participant contains the
similar document to perform subsequent processing (e.g., notify the corresponding
participant’s fraud department or coordinate payments).

These applications must be secure, meaning that malicious participants and
external actors must be detected on the network, their attacks must be mitigated, and
they must be promptly removed from the network. To avoid deception, these
applications must prevent participants from discovering documents that they do not
own. In particular, the system must provide safeguards to ensure that querying
participants can only query for authorized documents (e.g., documents similar to
those that are already in their possession), to prevent external participants from
determining the contents of the private repositories. Our solution design provides an
ideal tradeoff between two extremes in the design space, explained below.

One extreme design is to share all the raw insurance data:
e Very strong fraud Detection
e /ero Privacy

Another extreme design is to not share any insurer data (as is today):
e No fraud detection
e Maximum Privacy (no one sees anything)

The solution provides a powerful algorithm for fraud detection while also
providing a high degree of privacy.

Process Problems
No available process
No standard way of detecting fraudulent claims
No standard way of processing fraudulent claims
Data residency policies preventing data sharing
Multiple sources of data & documents

Manual and bespoke processes

Business Problems

3-4% - Fraudulent similar claims Cost to insurer to customer - high premium
Support diverging fraudulent claims' processes Cost to insurer to customer - low satisfaction
Audit operational costs Preserving data privacy requirements

High Operational Costs $80 Billion lost for fraudulent claims

Prolonged execution time

ép Luther Systems 5

3.2 The newly introduced automated process

Together with AXA and AIA as partners, Luther drafted a new process to
address and automate the problem. The detection of similar documents provides a
safe and useful tool for insurance companies to decrease the number of fraud claims
and improve customer services, and ultimately provide lower insurance premiums.
These policies are usually sold by individual Insurance companies for any incidents
stipulated in the policies. Below is the description of the process between 2 specific
Insurance companies.

This process can happen between any 2 of the companies across the network:
e Insurance companies handles and submit claims (company B in the diagram
below):

o All the companies submit claims

o The solution will normalize and encrypt the data locally within the
insurance company.

o All the encrypted claims are sent to the network in real-time, where they
are saved for 90 days.

e Insurance company A captures and handles the claim (The case of similar
claim):

o Once a claim is submitted the insurer will start to handle it.

o The system will normalize the data and encrypt the claim

e Resemblance Network:

o Once the claim is encrypted the system compares it with the other
encrypted saved claims in the system. If a match is found then the
system flags this to the company who filed the claim.

e Both Insurance Companies A and B:

o The insurers who issued the two similar claims receive, review, and
approve the allegations of matches, and decide how to handle the
flagged claim.

ép Luther Systems 6

af — § —

Alan, the insurer at AlA All the AlA’s claims are inserted, All the claims are sent
captures and handles claims normalised and encrypted to the network

— @ —o®

The claim is sent the claim is inserted, Daniel, the insurer at AXA

to the network, and it detects a match normalised and encrypted captures and handles claims -
She inserts a new claim that

is similar to one inserted by Alan

/ 'ia (company B)
\ éa

The network sends alerts to both
Daniel and Alan

ég] Luther Systems 7

4. Objectives

The objective is to create an object match detection process usable across

industries, which is fast, standardized, simple, and low-cost to operate. Align all the
insurance companies across the world, by decreasing the number of fraudulent claims
through high standard safety levels and privacy-respected collaboration networks.

This requires:

Identify similar claims

Ensure data privacy between all the participants of the network

Ensure data storage on the Blockchain is GDPR Compliant

It can identify similar claims, in less than 1 sec

Create a network that is easily scalable to add new insurance companies

égl Luther Systems)

5. Solution

5.1. Solution overview
Deep Process Automation using the Luther common claims repository.

Building the world's best international common claims network, best for
insurers and best for customers, required automation that could handle the inherent
complexity of a multi-insurance process involving hundreds of different Insurance
companies and processes. It is equally essential that the new network could be built
scalable to easily adapt to an always broader audience. This was far beyond the scope
of traditional workflow automation technology which provides process automation for
workflows with tens of tasks and one or two separate operational participants.

Furthermore, connecting and coordinating multiple instances of workflow
automation presents several challenges, including much longer development time, far
less efficient code, limited permissions for different users, limited visibility, and
maintenance overhead. This was further far beyond the scope of Robotic Process
Automation which is effective when processes only have a few steps and involve very
few participants. This is why AXA and AIA have partnered with Luther Systems to
utilize its Deep Process Automation technology to build this product for a safe and
privacy-wise collaboration on Luther's platform.

ﬂp Luther Systems 9

Deep Process Automation is a new automation technology for automating
complex enterprise processes with multiple separate participants involving hundreds
to thousands of tasks and logical rules. Luther's platform provided the operating
system to run the process while providing the rails for orchestrating, executing, and
monitoring the complex workflows. It also gave the development tools to achieve
rapid development times. With this new platform, similar claims detection across all
the operating entities of each Insurance company can collaboratively detect and be
alerted of all claims, even international cases, directly inside the product.

5.2. Demo

Here please find a Demo of the product

5.3. Resemblance Network overview

To describe the required functionalities of the product, Luther worked with AXA
and AlA, subject matter experts, to develop detailed process maps and identify all the
participants involved and the particular fields which can be key in the detection of
matches between claims.

5.4 How does it work

Luther uses its similarity detection module to create a network of semi-trusted
and untrusted participants. Each participant runs software, known as Oracles, that
translates their private claim data into an encrypted form which the oracle places on
the permissioned Blockchain network. The original data will never be shared in the
untrusted participants' network. The Blockchain network safely and reliably executes a
smart contract that examines this encrypted data to inform the participant of whether
or not the original claim is a duplicate. The system compares the encrypted claim with
all of the other encrypted claims saved in the network.

The encryption process uses Luther's proprietary multi-signature hashing
method, which constructs several encrypted signatures from a claim such that:
e the original claim is kept private/confidential
e slight modifications of a claim (e.g., changing a name or amount) are detected.

When two claims are similar between two different insurance companies it can
be a specific sign of fraud. Typically, fraud detection algorithms are measured via
sensitivity & specificity (False Positive & True Negative).

In this case, sensitivity & specificity do not apply in the usual sense, rather
e False Negative: if two claims DO match in at least 8 of 10 fields and the system
DOES NOT capture that as fraud,

ép Luther Systems 10

https://www.youtube.com/watch?v=80fCaGyO7Ag

e [alse Positive: if two claims DO NOT match in at least 8 out of 10 fields and the
system DOES designate this as fraud.

Based on these assumptions, the process is designed to:
e Normalize data (elastic Search Matching)
Convert and Standardize data
Compute multi-signature Hashes over data permutations
Encrypt with key derivation functions
The data are then submitted to the Network
Rapid search with match thresholds on Common Repository
Real-time Alerts

Solution: Data Gathering Architecture: collect, select, normalize & encrypt claims data

é _{3 Insurer1 claims portal Insurer2 claims portal Insurer3 claims portal
S a Ul or APl or DB Ul or APl or DB Ul or APl or DB
Insurer1 Insurer2 Insurer3
claims data claims data claims data
Select primary insured data fields & Select primary insured data fields & Select primary insured data fields &
normalize data fields normalize data fields normalize data fields
Select secondary insured data fields Select secondary insured data fields Select secondary insured data fields
& normalize data fields & normalize data fields & normalize data fields
Convert data
)) Convert data Convert data
fields into COM fields into COM fields into CDM
Encrypt Encrypt Encrypt
data data data

The data from each insurance company needs to be normalized and the key
flelds need to be extracted from each claim. The list of key fields is the following:
Passport number
Complete name of the patient
Complete name of the doctor
Name of the Hospital
Amount of the services submitted for the claim
Dates - consultation, admission, and discharge.

Once the data are extracted for each claim, they are selected and normalized.

The Luther solution uses a normalization process to convert fields from the
document into a structured standard (canonical) representation. For example, a
medical claim that has a hospital name field is normalized by finding the closest
hospital name (Levenshtein distance) in a list of known official hospital names. To
perform this matching, we use the Elasticsearch database system which executes

ép Luther Systems 1

flexible search queries (including fuzzy matching) against a large document corpus.
The solution also supports standard normalization techniques, including converting
timestamps into a standard timezone (UTC), and money values into a standard format
(to pence). With all the data properly organized, it is time for the computation of the
multi-signature Hashes over data permutations. The solution extracts sets of the
normalized fields from the document and computes cryptographic hashes ("multiple
signatures”) over these sets. Until this point, the data are stored in each insurance
company's proprietary data space.

The hashes are subsequently submitted to the blockchain network via the
Oracles. The number of hashes that are generated is a function of the business rules
of the application and the required similarity metric. For example, a medical claim that
includes a passport number will have an exact match requirement of the passport
number, claims with different passport numbers are considered as not similar
regardless of the values of the other fields. In this case, the passport field is always
included in every generated signature. In cases where the field can be different (after
normalization) yet the documents are still considered similar, then the system
generates all subsets that both contain and do not contain that field value.

To prevent attackers from successfully decoding hashed records using brute
force techniques (known as “preimage” attacks), Luther's solution leverages
computationally difficult hash functions known as “Key Derivation Functions” that are
tuned to require a large number of resources to compute. Specifically, the solution
uses the S-Crypt hash function and sets the parameters to be as strong as possible
while still meeting the performance requirements of the system. Furthermore, no
information about the original Insurance company is saved in the untrusted
participants' network. It takes an attacker an average of 5.7e9 years to “decode” a
single claim given the solution's data fields (there are about 1e34 combinations). If a
similar claim is detected, the network will send a real-time alert to the insurance
company that issued the claim.

5.5. Luther platform architecture benefits

The choice of a blockchain-based architecture sets the platform on a strong

footing for the future:
e Enables a single, secure, scalable shared claims database

Provides real-time event-based architecture with multi-organization support
Reduce the cost of processing and identifying similar claims
Enable different organizations to work together to tackle growing fraud
Enforces strong integrity protection of each Insurers data in the network
A federated architecture allows easy integration with existing infrastructure
New participants can be added over time while preserving process and data
integrity, fast scalability, and data privacy.

ép Luther Systems 12

| NPEA Y RN

THITW N ANy

6. Technology Insights

The network developed with AXA and AIA is a collection of Virtual machines,
which run Kubernetes on AWS Cloud. The network uses Hyperledger Fabric to
establish a distributed ledger, which manages transactions. Luther’s platform runs the
business logic held within smart contracts which orchestrate and execute the
detection of similarities in claims.

As underlined above, Luther uses its similarity detection module to create a
network of semi-trusted and untrusted participants. Each participant runs software
known as Oracles that translates their private claim data into an encrypted form which
the oracle places on the permissioned Blockchain network. In this chapter we will go
through the technical

ép Luther Systems 13

6.7. Luther stack

Below is a closer look at the technical components that make up this
Hyperledger Fabric network starting with an overview of the software stack.

User Interface Microservices
Process participant systems

Oracles: Connectors Bridge between platform & participant

ELPS (ellipse) environment for developers
ELPS to code their business logic

Substrate layer which sets up the
Substrate environment for the smart contracts
X A Blockchain layer to manage events, which are
Blockchain HLF modeled as transactions across the network
Kubernetes layer to coordinate and optimally
Kubernetes allocate the compute resources

Virtual Machine Virtual machines for dedicated compute resources

The new product consists of a layered design where modules between layers
communicate using APIs. It is built on the Luther Enterprise Infrastructure Architecture
(LEIA). LEIA is a layered-microservice architecture that is built from the ground up on
blockchain infrastructure. Multiple nodes owned by separate companies connect
directly using permissioned blockchain protocols to form a decentralized blockchain
network. In this way, processes spanning multiple companies interconnected using
blockchain as the underlying orchestration and data sharing infrastructure. Please
refer to Luther’s offerings and website for more information on the LEIA platform.

6.2. Platform & technical specifications

The product is built on modern architecture, combining technologies including
enterprise Blockchain Technology and microservices. Luther’s platform provides AXA
and AIA with:

e environment setup, infrastructure, platform & integrations with existing
systems
e operating system (script) to orchestrate and execute automated operations

For the product, 6 blockchain nodes were deployed along with several
microservices. Each insurance company has their own URL for the application.

6.3. Kubernetes to manage compute resources

Kubernetes, used here, is the standard cloud-native container orchestration
platform. The network runs on the managed Kubernetes offering by AWS, Elastic
Kubernetes Service (EKS) driving the following benefits:

e Resilient and scalable container (docker) execution
e Seamless integration with AWS services including EC2, API gateway, and EBS

ép Luther Systems 14

e |ow maintenance effort to stay up to date with the latest Kubernetes releases

6.4. Blockchain to manage process execution events (transactions)

Each organization runs peer nodes and off-chain services known as oracles. In the
UAT, claims were submitted by participants only to the oracles belonging to the
submitting participant. These oracles processed the claims and then used a
blockchain client to connect to their organization's peer and submit the multi-signature
hashes across the blockchain network for matching by the smart contract. In the UAT,
Luther ran infrastructure on behalf of AIA and AXA, where each org had:

e 2 replicas of oracles - AWS instances

e 2 replicas of BC peers - AWS instances

e 3 cores for each peer.
For improved operations, Luther also ran 2 monitoring instances, a grafana health
dashboard, a VPC bastion, and an ordering service.

e Organization:
o Across the network, each Insurance company is a fabric organization
o There are a total of 2 fabric organizations, AIA and AXA.
e Peers
o Each organization has at least 2 fabric peers, based on the traffic run the
number of peers can be increased
o There are a total of 4 peers.

Network and
Nodes

The Blockchain network has 2 parts:
e Network operations

é? Luther Systems 15

o Creating, sharing, validating events as transactions across the
distributed network, and storing the events (transactions) on the
distributed ledger

o The network uses private data collections (PDCs) to ensure only
participants relevant to a transaction can see the associated data
An ordering organization that uses Raft consensus
The Distributed Ledger Technology (DLT) provides a standardized
process execution & data sharing layer across the network

e Smart contract

o Standardized orchestration, execution, and validation of the process

steps.

6.5. Smart Contracts to orchestrate and execute process steps as
events

In the solution, process steps are referred to as events and every event is
executed and stored as a transaction on the blockchain network.

The smart contract is the script that:
e At this point, the Smart contract will validate the claim by searching for a
similar claim
e And send an alert to the insurance company that issued the last claim involved
in the detection of similar claims

The image below, by way of illustration, is a representation of the network and
the interactions. Insurance company A inserts a claim. The claim inserted by company
A is similar to one of the claims handled by company B. In the case of a match, all of
the companies with a similar claim receive an alert.

ép Luther Systems 16

1. Insert a similar claim 1. Insert claims
2. Select and normalize LemmmTTT e - 2. Select and normalize
data fields P T~ data fields
Insurance 3. Convert data ras Ss. 3. Convert data Insurance
company A 4. Encrypt data O’ \Q 4. Encryptdata company E
& Va\ld:ate the claim , N 5. Validate the claim
6. Receive alert for L 6. Receive alert for
similar claim ¢ N similar claim
Il \\
s AY
ll !
i \
!)
! 1
:)
!]
| 1
' 1
l !
\ 1
1 !
\ i
\ /
\ /
1. Insert claims (similar) O O 1. Insertclaims
2. Select and normalize . p 2. Select and normalize Insurance
Insurance data fields AN e data fields
3. Convert data e e 3. Convert data company D
company B 4. Encrypt data ~ 4. Encrypt data
5. Validate the claim hRS 5. Validate the claim
6. Receive alert for Seo - -7 6. Receive alert for
similar claim \N‘-"'O"'-/’ similar claim
O Oracle/middleware
1. Insert claims
. 2. Select and normalize
(O Blockchain peer o
3. Convert data Insurance
Smart Contract 4. Encrypt data company C
5. Validate the claim
6. Receive alert for
Team similar claim

6.6. Oracles to manage interactions with external participants

The Oracles use clients (SDKs) to communicate with external systems and
achieve a set of functions such as:
e Retrieve data from SOAP/XML or other services
e Trigger alerts
e Connect to a local identity management system to authenticate users

Finally, the oracles include a DLT client (SDK) to initiate transactions that read and
write data from the ledger. This allows:
e Ingestion of data from external systems into the blockchain network for
subsequent smart contract processing
e Response to events triggered by the blockchain network through smart
contract processing

6.7. Microservice Architecture

The application is broken down into individual components based on function.
These components are then packaged into containers and provide microservices with
REST APIs. Each microservice API:

e [s defined using OpenAPI specification.

e s deployed and managed via extensive automation and infrastructure as code

e Has a fully automated CI/CD pipeline for automatic deployment to the
integration environment

ég] Luther Systems 17

The entire ensemble of microservices is deployed using pipelines for fully
versioned deployments to staging and production. Search and Reporting
Microservices - CQRS (Command Query Responsibility Segregation) - have also been
developed to perform three broad functions:

e Real-time even streaming to off-chain databases for search services and
reporting
e Repayable event streaming with push and pull flows to ensure reliable in-order
delivery of every event to downstream consumers
o Push flow uses RabbitMQ (Queue) message broker for immediate event
processing
o Pull flow uses DLT events for reliable event processing and failover
e On-chain event generation per transaction, with off-chain consumer
microservices for an off-chain population of relational databases enabling fast
off-chain indexing for search and reporting.

Oracles: Connectors Bridge between platform & participant

ELPS

Process participant systems

Substrate
Blockchain HLF

Virtual Machine

é? Luther Systems 18

ST

7. Discussions on Technical Architecture

/7.1. Why not use event streaming technologies like Kafka?

Event-streaming technologies including Kafka do not provide key features
necessary to meet the application requirements.
e Single org only:

o

Kafka uses a conventional consensus (zookeeper) and file system
technology

Although these technologies are distributed for performance and
availability purposes, they are centralized in that they are operated by a
single administrative team

Kafka does not provide an architecture where multiple independent
entities participate with their infrastructure (i.e., it is not federated)
Additional services are necessary to reconcile data across multiple
organizations e.g., Hyperledger Fabric with Kafka consensus

e No logic execution capability:

o

o

Kafka is ultimately a publish/subscribe system

It reliably and efficiently delivers unprocessed messages from a single
publisher to one or more subscribers

Any business logic or data transformation code is executed outside of
the Kafka cluster and done directly within an application

e No data compliance capability to control data placement:

é? Luther Systems

19

o Global applications have data residency requirements where data must
not leave certain organizations

o Kafka messages are stored in topics. Topics are divided into partitions
where each node (broker) hosts partitions

o No out-of-the-box mechanism to restrict messages on the topic to
specific regions or otherwise restrict them to specific nodes while
maintaining message order.

Since these key features are missing, it requires developers to build additional
ad-hoc services on top of Kafka. Leading to the following conclusions:
e Thisis bespoke, expensive, error-prone, and time-consuming
e The bespoke architecture developed will have considerable overlap with
Blockchain architecture
e Blockchain technology (hyperledger fabric) is compatible with Kafka (fabric
orderer)

/.2. Why Hyperledger Fabric over Corda

Corda uses an Unspent Transaction Output (UTXO) architecture which is suited
to high transaction volume, low transaction logic complexity, and participants enforce
validation rules on a per-transaction basis (corDapp).

On the other hand, HyperLedger Fabric (HLF) uses an Execute Order Validate
(EQV) architecture which is well suited for the general execution of standardized
business logic across a network. It is good for medium transaction volume with high
transaction logic complexity where the Fabric network enforces standard validation
rules across all transactions via smart contracts. Luther, therefore, selected HLF for its
architectural benefits that are well suited for automating complex processes using
smart contracts.

/.3. Scalability

The Luther platform and infrastructure is managed entirely using Infrastructure
as Code (laC), for the rapid scaling of resources. It provides full container
orchestration via Kubernetes, allowing automated and low-friction scaling of
computing and storage resources across nearly 400 microservices. Moreover, gossip
protocols are tuned for unique network configurations to readily support several peers.

As a result, the solution achieves real-time processing of transactions within
<Ts within a production scale network.

/.4. Best technology fit for the use case

Luther has considerable experience building and operating large-scale DLT
networks in production.

ép Luther Systems 20

Luther's platform was a perfect fit for the distributed nature of the process: a
distributed problem that requires a distributed solution. HLF as an underlying DLT was
the right technology for standardizing the complex process across all the insurance
companies and enforcing strong standards.

Interaction Layer & C)

External Services e~ [N — ()
R o v I
o Claims sl | L L

DB Admins Handlers

[WebPortal | Neb Portal
Local Claims Duplication Network Admin \-/u\-d
Claims Local Claims Notification Portal N
System System o
IT Admins

\ REST/JSON (OpenAPI) /

- - 1
Application Adapters DM API
API Gateways/Load Balancers Access
Microservice Connectors System
4

Luther Platform \ gRPC (protobuf)
| BCOracles [~ T T T - 1
| BC Clients 1
| Field Normalization 1
| Claim Hashing |
| Key Derivation Function Y !
I n
T e e e e e A Luther SDK
) E R \
| Business Logic Engine 1
I Encrypted Claim
: Claim Matching
| Alert Notification

Smart Contract Execution Platform

| | Consensus
| Peer Discovery
I GGSSIp Replication

Peer-to-peer Blockchain Network
(Logical View)

Organization Entity Organization Entity (OF)

ép Luther Systems 21

8. Technical key performance indicators
(KPIs)

8.1 Detection / Privacy KPIs

The dual goals of project Resemblance are to:
e Detect matches (possible Fraud) between submitted claims
e Ensure claims details are not visible to other platform participants or
outsiders.

Luther systems compared the baseline and the developed system using several
metrics and KPIs. These metrics are practical in that our customers require a solution
that must provide a certain level of performance guarantees while maintaining data
privacy and security.

The two KPIs for measuring the performance of the system against these
goals.
e Goal 1 is a binary classification problem for which there are standard
KPls, including Specificity / Sensitivity analysis.
e Goal 2 is less clearly defined as there are no well-defined security KPIs.
Below are a few options for measuring “Privacy Performance”.

ép Luther Systems 22

8.2 Detection Performance

Typically, for Fraud detection, claims are already classified as Fraud/ Not Fraud
and a detection algorithm is designed to classify new claims based on their features.
In this case, once the algorithm is designed in practice, we measure its sensitivity and
specificity (False Negative & False Positive) which are measures of the algorithm's
performance.

8.3 Options for Privacy Performance

There are a large number of hashes on the repository at any given time. The
goal of an attacker is to “decode” the hashes and learn about the details of a claim.

As measures of the algorithm to protect privacy we underlined the following:

e Expected number of “hashes” that need to be generated for a hacker to
‘decode” (read) any claim in the repository.

e The expected amount of time it takes a hacker to “decode” (read) any
shared claim in the repository.

e Probability of one organization being able to deterministically read a
claim from another organization.

These quantities are driven by the “threat model”, which is defined by:

e who is the attacker

e how much data do they get access to

e how much do they know about the inner workings of the system

8.4 Options for threat model

In the options for the threat model Luther has considered:

e Other insurance companies attempt to systematically “decode” the
hashes on the common repository.

e Other insurance companies attempt to “learn” about claims by submitting
synthetic claims to the common repository.

e Any node in the system is externally hacked and the hackers “decode”
the hashes. The hacker knows the exact hashing function and
multi-signature hashing process we use, as well as the exact data fields,
the range of values that the field can assume, and the relationship
between the field values.

8.5 Options for Decoding Stolen Data Methods

There are numerous methods for attempting to decode the stolen data. Below
we describe a particular method for decoding the stolen data.
e Systematically select each claim field claim from a range of values
e Combine the fields to create the ‘combined data fields”

ép Luther Systems 23

e C(Creates the multiple hashes required for the MultiSignature hashing,
using Luthers's hashing function
e Compare each generated hash with all hashes on the database for an
exact match
o Any exact matches between hashes mean that the original claim
data (before hashing) and the randomly generated fields are an
exact match
e This process is repeated until the attacker finds an exact match

For this set up the hacker will need to create “all’ combinations of field values.
Given the fields we have in the product, this is approximately 1e34 combinations.

8.6 Average Number of Hashes Before the Attacker Finds a Match

Taking the “weakest Link" approach we need to find the most vulnerable hash
(the smallest search space) and estimate the search space size for that hash. This is
assuming that hash is the easiest to break and so an attacker will target that hash.
This will be a hash of 8 of these fields together.

Keeping in mind that Passport Number is included in all Hashes, the smallest
Search Space Hash is the hash of the combination of the following fields:
e Passport_number, Patient_first_name, Consultation_date, Payment,
Admission_date, Discharge_date, Doctor_first_name, Hospital_name

This results in a search space of size 4.5e24, which is the number of all the hashes
that can be generated. At any given point in time, there will be ~250,000 claims
(hashes) on the Blockchain, which we assume the attacker has “stolen’. The attacker
will generate the hashes one by one and compare each newly generated hash to the
list of ~250,000 hashes she has stolen, all at once.

Given all this, it takes an attacker on average 4.5e24 / 250,000 hash
generations to “find” a matching hash between her randomly generated hash and the
list of 250,000 hashes stolen from the Repository. While strictly technically speaking
this is an approximation, the orders of magnitude are exact.

We will conduct the following analysis for a

e “Slow Hash" which is what we use

e ‘Fast Hash” which is a typical hash function (for example SHA-256).

e With the Slow Hash function, each hash takes ~10ms long to compute.

e The speed at which the Hash function is computed is a parameter that
we set. This parameter is set considering there are 36 hashes that need
to be generated and processed all in under 1 Second, according to the
requirements of the product.

ép Luther Systems 24

For the Slow Hash function this takes the attacker on Average 4.5e24 /
250,000 * T1e-2 seconds. This is on the order of 1.8e17 seconds. This is
approximately 5.7e9 years.

With the Fast Hash function, each hash takes ~4e-7s long to compute.
For the Fast Hash function this takes the attacker on Average 4.5e24 /
250,000 * 4e-10 seconds. This is on the order of 7.2e11 Seconds. This is
approximately 227 Years.

8.7 Detection vs. Privacy Tradeoff

On one extreme both claims’ data sets are visible to a detection algorithm,
which can be used to design a powerful algorithm (Sensitivity/ Specificity scores),
however, this algorithm has Zero Privacy as the contents of all claims are visible to the
algorithm. On the other extreme, there is the current “algorithm” (approach) of not
attempting to capture Fraud (matches and points of connection), in this case,
fraudulent claims go undetected, so the algorithm has very poor detection
performance (Sensitivity/ Specificity scores), however, this algorithm has Perfect
Privacy as the contents of one parties claims are not visible to the other party at all.

Our solution provides a tradeoff between the two extremes, the algorithm
provides fraud detection while also providing a high degree of privacy.

8.8 Further Considerations:

Luther also considered the following points:

If attackers don't have a particular person in mind, Luther's analysis is for
the detection of a single claim, while it is important to protect against
this, the attacker will likely want to decode multiple claims for any
meaningful malicious use

Hardware enhancements and quantum computing may not destroy this
approach, using a quantum-resistant hash function. While quantum
computers provide vast computational speed-ups in certain types of
computations and tasks, it is possible to simply replace existing hashing
functions with “quantum-resistant hash functions” which can neutralize
the speed-up provided by quantum computing

Not assuming an advanced persistent adversary (APT) who has
continuous access, they only download DB once and then try to crack.
The assumption in this analysis is the attacker simply downloads all the
data present on the common repository once and attempts to decode the
data. We do not assume the attacker has continuous access to the
common repository in which case she can collect much more data and
make inferences based on submission patterns. That threat model needs
to be analyzed separately depending on the exact persistent threat
model.

ép Luther Systems

25

9. Results

The solution proposed in this document and the developed product address the
problem with a scalable, flexible, and privacy-protected solution. Furthermore, the
multi-signature hashing function, the strong hash function selected, and the
distribution of data in several structures leave the information safe and not available to
any malicious attacker. This chapter is for exploring the results on a business,
commercial and technical level.

9.7 Product results

The solution is valuable not only for the newly introduced process but for the
extensive automation that allows the process to complete a check of matches in less
than a second.

Examples of automated steps are:

e Standardized common format claim

ép Luther Systems 26

Automated encryption of claim submission to the network
Automated detection of similar claims across the network
Automated alarm trigger

The system also includes a document similarity metric that detects similar
documents. The system not only works on exact matches of claims but also extracts
matches between fields even if one claim is not an exact duplication of the other.

The solution also keeps privacy protection as a focal point. The solution enables a
safe and privacy-protected environment where collaboration has never been easier.
Furthermore, it's easily scalable, which means multiple insurance companies can join
the network and keep their processes and data as is without renouncing the ability to
collaborate to tackle fraud.

9.2 Commercial results

We have rapidly developed a world-leading matches detection product to tackle
fraud. Thanks to this transformative initiative,
similarities in claims are detected before and petection Speed - in less than 1 second
resolved faster and cheaper with a sharp
increase in customer satisfaction.

$2.7 Million - Cost reductions for Fraud

6% payout reduction incurred due to fraud
The detection of similarities between
two claims requires less than 1 second. The
detection triggers a flag to the entities of a
single insurance company that will require further investigation.

ROl estimated at 14X

The flag is estimated to deliver $2.7 Million in cost optimization for insurers and
a 6% payout reduction incurred due to fraud.

ép Luther Systems 27

9.3 Technical results

LUTHER SYSTEMS

Upload Network Status Blockchain Network

Network Status

Total Number Of TXs On Network: 3,018,352

Number Of TXs On Network Past 90 Days: 254,765

Number Of Frauds Flagged: 32,645

Average Processing Time Per Claim: 954ms

Average Time Hashing A Claim: 764ms

9.3.1 Detection Speed: detect document similarity in less than 1 second

The solution leverages Luther's scalable and efficient platform to detect similar
claims in less than 1 second. This performance enables the system to be part of
existing business process workflows that must process documents in real-time.

For example, it allows an insurance claim to undergo fraud detection
immediately at the time of claim submission, providing immediate feedback to the
insurer and preventing subsequent processing errors and payout.

9.3.2 Document Active Period: keep docs active for a long period of time

The joint repository is capable of storing & comparing active documents for
long periods, in its current version the documents were kept active for 90 days.

9.3.3 Number of active documents in the joint repository: over 1 billion
docs active

The joint repository can store and compare over 1 billion encrypted active
documents. This enables the solution to detect similar documents across multiple
organizations in near real-time dating back long periods.

9.3.4 False positive rate: 0.1% false positive detection rate

Luther's solution achieves great accuracy with a 0.1% false-positive detection
rate based on constructing signatures for each document.

é? Luther Systems 28

9.3.5 Security & cost to decrypt a document on the repository

Luther's solution relies on signatures that are resistant to brute force attacks.

It takes an attacker over 6 months and over S10M to decrypt one encrypted
doc.

We specifically tune the hashing function to be as close to impossible to break
as possible, while maintaining the average detection delay requirement. Our estimates
indicate that even if an external party gets access to the repository by breaking the
security layers in accessing the repository, it will take a highly specialized software
dedicated to the decryption task, over 6 months, and over $10m in computing cost to
decrypt the document and gain access to the data.

ép Luther Systems 29

10. Expansion

Think of multiple similar processes solved by the same product. We need to
make fragmentation across complex processes a thing of the past. It is like building a
railroad network where we have just positioned the first rail track. Several industrial
processes can benefit from the introduction of a product like Resemblance. It can
securely share the information in a network where silos visibility is creating economic
impacts on business.

Hereafter are some examples of how Resemblance can solve other matches
and points of connection issues:

Coordination of benefits: If you are health insurance and one of your plan
members issues a claim, you need to know if the plan member is registered as a
secondary beneficiary of another insurer's plan. Resemblance can flag the possible
presence in both policies of the same plan member, without sharing private
information of either the plan member or the Insurance company.

Open lines of credits for customers. If you are a construction company or a
supplier and you need to keep track of the customers' credit lines and the number of
entities and offices makes the check a little bit difficult. Resemblance can instantly
recognize if there is already a line of credit for a specific customer and settle all under
a specific threshold.

é? Luther Systems 30

Inventories and customer management. \When you have several business lines
and several customers and several entities, it is difficult to check and track all of them.
The actual result is that you can have 30000 customers when you have 2000.
Resemblance can instantly reconcile your data and flag the presence of a similar
customer or product in your system. This will help you tailor your offer to the
customer.

Billing liabilities. When you must check, as a healthcare provider, billing
liability based on Personal and private information, you have several offices, and the
transmission of data can lead to privacy, hence the reconciliation is difficult.
Resemblance can solve the problem by adding the right level of shared information
always security and privacy-wise.

Patent and trademark offices. There are always more products that, under
regulations, cannot be copied. If you are a music provider or a pharmaceutical
company, how do you track that your patent and trademark are protected?
Resemblance can do this for you, check several databases and extract and flag any
unauthorized reproductions of your product, without the need to expose your private
information.

Rapid expansion company - target evaluation. \When analyzing a merger or
acquisition it is difficult to understand the synergies and the costs associated.
Resemblance can underline similarities and differences between the two companies
and enhance the process of evaluation of the companies, keeping the information
secure.

é? Luther Systems 31

Striving to make your life better and safer

11. AXA Company & Offerings

AXA S.A. (styled as AXA) is a French multinational insurance company and one
of the leading insurance companies around the globe. The AXA Group operates
primarily in Western Europe, North America, the India Pacific region, and the Middle
East, with a presence also in Africa. AXA is a conglomerate of independently run
businesses, operated according to the laws and regulations of many countries. It is a
component of the Euro Stoxx 50 stock market index®.

AXA offers a variety of products and services to protect:
e Properties, which include the insurance of personal property (cars,
homes) and liability (personal or professional)
e People who encompass both savings and retirement products, on the
one hand, and other health and personal protection products
e Asset involves investing and managing assets for the Group's insurance
companies, as well as for third parties, both retail and institutional clients.

AXA has 149,000 employees committed to better protecting customers
around the world, 50 countries where they deliver the same quality of service and
dedication around the world, and 95 million customers. It has revenues of Euro 9.9
billion and a Net income of Euro 7.3billion*.

8 https:/en.wikipedia.ora/wiki/AXA

4 https://www.axa.com/en/about-us/key-figures#tab=social-data

é? Luther Systems 32

https://www.axa.com/en/about-us/key-figures#tab=social-data
https://en.wikipedia.org/wiki/Axa

S
Q1>

For a century, we have served millions of people and
generations of families all around Asia.

12. AIA Company & Offerings

AIA Group Limited, known as AIA, is an American-founded Hong Kong
multinational insurance and finance corporation.

It is the largest publicly listed life insurance and securities group in Asia-Pacific.
It offers insurance and financial services, writing life insurance for individuals and
businesses, as well as accident and health insurance, and offers retirement planning,
and wealth management services, variable contracts, investments, and securities.”

AIA is the largest independent publicly listed pan-Asian life insurance group —
with a presence in 18 markets across Asia. AlA is committed to helping you meet
your financial needs and goals with a wide range of life and health protection and
long-term savings products for individuals and businesses.®

AIA achieved strong financial results for this year with a value of new business
(VONB) of US$3,366 million, underlying free surplus generation (UFSG) of US$6,451
million, and an embedded value (EV) operating profit of US$7,896 million.’

® https://en wikipedia.org/wiki/AlA_Group

° https://www.aia.com/en/about-aia.html

7 https://www.aia.com/en/media-centre/press-releases/2022/aia-group-press-release-20220311.html

ép Luther Systems 33

https://www.aia.com/en/media-centre/press-releases/2022/aia-group-press-release-20220311.html
https://www.aia.com/en/about-aia.html
https://en.wikipedia.org/wiki/AIA_Group

_uther

Accelerating the advent of the automated enterprise

13. Luther Company & Offerings

13.17. Who we are

Luther Systems is a software company and a pioneer in Deep Process
Automation: the business of automating, orchestrating, and managing complex
enterprise processes.

At Luther, we build the next generation of enterprise computation technology
for use by organizations with processes that have remained out of reach for prior
automation platforms.

Through our platform, we enable organizations to reimagine the way they
operate and unlock unparalleled levels of automation in a world where collaboration
and flexibility across disparate organizations, geographies, regulations, or standards
are more important than ever.

13.2. Luther’s platform for automation

At Luther, we recognize that enterprise processes of today are complex and
challenging to automate. They require orchestration across multiple participants,
hundreds to thousands of tasks as well as non-standard systems and datasets. Their
execution is filled with reconciliation, rework, delays, and costs that have been
unavoidable until now.

ép Luther Systems 34

Luther's unique proposition lies in its ability 2 §X faster application development
to take on this complexity through a distributed
technology architecture: a distributed solution for
a distributed problem. 7X process execution

10X Total Cost of Ownership reduction

With our proprietary LEIA platform, we 10XROI

prowde our customers with: Fully automated compliance by design

e Enterprise developers' tools to automate Highly scalable
their applications rapidly

e The operating system orchestrates and
executes their automated processes

Improved customer experience

Reports from the field have been staggering, validating our vision for the future
of enterprise computing. Our customers span multiple industries and use our platform
today to orchestrate complex processes such as Claims Settlement, Mortgage
Sourcing, Asset Issuance, or Customer 360 Views. Their execution cuts across siloed
functions, teams, or even organizations performing thousands of independent steps
across Uls, APIs, databases, applications, workflows, and Robotic Process Automation
(RPA).

13.3. Luther's offerings

Luther's unique architecture combines and coordinates multiple layers of
technology which enables enterprises to (i) develop enterprise-grade automated
processes and (ii) orchestrate & execute the automated processes in production.

Below is an overview of Luther's stack. Luther’s LEIA platform automates and
provides the majority of this stack so that enterprise developers can exclusively focus
on developing their business process logic.

ép Luther Systems 35

TN Pre-built modules to automatically set up a production environment

(MEHELGUEET T Pre-built standard connectors to integrate seamlessly with systems

Nodes for each process participant
Proces§ Unique smart contract framework to ensure quality & prevent mistakes
Automation
Smart contracts shared by all nodes to orchestrate & execute each step

Development Tools
for business logic

Unique environment for devs to code only the business process logic

(=
2
-

[
=1

[}

Q
-£=

o

=

o

E

™
g
8
o

Process Smart contract (i) orchestrates each step, (i) executes the business rules
scheduling & Pre-built Standard Modules automate common process functions
LI E Ll l Unique smart contract framework to ensure quality & prevent mistakes

Unique platform to coordinate the entire process with all of the above

Provided by Luther Self-serve by the customer

The Luther Platform is built around Luther's breakthrough insight that virtually
all complex processes can be seen as a set of "smart contracts” between steps or
participants in a process. Smart contracts are the rails over which the Luther Platform
orchestrates, executes, and monitors processes in real-time. With the LEIA platform,
our customers can ensure that multiple steps across the entire process are executed
and orchestrated in a way that follows a predefined & agreed-upon business logic.
This enables the Luther Platform to easily automate complex processes that were
previously highly manual and non-standardized.

Luther's distributed platform also provides developers with the tools to achieve
rapid development times and keep them in total control of the automation process.
The LEIA Platform is designed to make the complex simple and can be used by
developers with only a few weeks of training.

Luther's platform can be applied to numerous complex enterprise processes
across industries.

For more information about Luther’s platform please visit our website.

[59 Luther Systems 36

https://www.luthersystems.com

